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AI technologies have become ubiquitous, influencing domains from healthcare to finance and permeating our daily lives. Concerns
about the values underlying the creation and use of datasets to develop AI technologies are growing. Current dataset practices
often disregard critical ethical issues, despite the fact that data represents and impacts real people. While progress has been made
in establishing best practices for curating smaller datasets in a more ethical fashion, the unprecedented scale of training data in
the era foundation models presents unique hurdles for which AI researchers and practitioners must now face. This workshop aims
to unite interdisciplinary researchers and practitioners in an effort to identify the challenges unique to curating datasets for large-
scale foundation models—and then begin to ideate best practices for tackling those challenges. Drawing from CSCW’s tradition of
interdisciplinary exchange, our aim is to cultivate a diverse community of researchers and practitioners interested in defining the
future of ethical responsibility in the composition, process, and release of large-scale datasets for foundation model training. We will
disseminate the outcomes of this workshop to the HCI community and beyond by developing a conceptual framework of both the
challenges and potential solutions associated specifically with curating datasets for foundation models.
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1 INTRODUCTION

AI is increasingly integrated into various practical domains. Its versatility is evident in its use across a range of domains,
from healthcare [19, 22] to financial services [20, 56], playing a pivotal role in our daily lives. This versatility has
never been more apparent than with the proliferation of foundation models, large-scale models trained on a broad and
enormous array of data with the goal of being applied downstream to a wide variety of tasks [17].

There have been widespread concerns regarding the datasets used to develop these AI systems [11, 13, 18, 58, 68]. In
particular, concerns about AI datasets encompass issues related to the composition of data in the dataset [11, 13, 18, 24,
24, 35, 42, 68, 96], the process of collecting and labeling it [5, 6, 11, 25, 40, 41, 47, 60, 71, 72, 75], and the release of the
data for broader use [9, 31, 77]. Nonetheless, current practices in dataset curation for AI often prioritize dataset size and
utility, overlooking critical issues like fairness, privacy, and sustainability—despite the fact that “most data represent or
impact people” [98]. As datasets continue to scale in the era of foundation models, attending to the ethical implications
surrounding the compositions, processes, and release of massive datasets becomes uniquely challenging.

In this workshop, we aim to: (1) define the ethical principles that should apply to the composition, process, and
release of large-scale human-centric1 training datasets; (2) address the challenges that stand in the way of enacting
ethical principles given the size and technical needs of foundation models, specifically; and (3) ideate opportunities for
overcoming those challenges to define best practices for curating large-scale training datasets responsibly and imagine
potential solutions such as tooling ( e.g. [36, 54]), policies (e.g., [1, 65]), and frameworks (e.g., [34, 48]).

With the continuous growth in interest in the societal implications of foundation models within the HCI community
broadly (e.g., [21, 53, 85]) and CSCW specifically (e.g., [7, 50, 55]), we believe this workshopwill garner substantial interest
among CSCW participants and, as a result, garner engaged, diverse, and fruitful insights and future collaborations.
Given the interdisciplinary nature of the CSCW community, we believe that CSCW is the best venue to kick off this
workshop series as the development and release of foundation models continues to rapidly grow, largely unchecked.

2 ETHICAL PRINCIPLES FOR LARGE-SCALE DATASET CURATION

As AI has become globally ubiquitous, so too have the harms caused by AI deployments [32, 33, 45, 74, 87]. As a reaction
to these harms, numerous scholars have sought to define ethical principles aimed at guiding AI’s development and
deployment. For example, the ethical principle of “beneficence” is focused on providing benefit to others [23]. Yet the
beliefs underlying the concept of ethical principles are vast, difficult to define, and often inconsistent [34, 62, 95], leading
some scholars to besmirch the idea of AI ethics altogether [38, 73, 81]. Largely, the root of the issue with AI ethics is the
gap between principle and action [63], especially given that a single ethical principle may result in numerous outcomes
in practice [15]. Many practitioners trying to enact ethical principles are unsure how to proceed, given the different
priorities of individual actors and larger organizations [2, 44, 49]. How to enforce responsibility for enacting ethics is
an open challenge.

In particular, ethical principles are often most impactful when constrained to specific model tasks (e.g., [90, 93]) or
data types (e.g., [16, 59]). However, in the case of foundation models, the data collected is so vast and broad that it is
intentionally not constrained to any specific task or type. While we agree with prior work that defining ethical principles
and responsibly putting them into action is difficult, the curation of large-scale datasets for training foundation models
1Data that centers human faces, bodies, and cultural concepts [77].
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is only increasing. To guide specific practices for diminishing the harms of foundation model datasets, it is necessary to
define what those harms are and what principles should guide mitigating them downstream. Given the vast array of
possible principles, we plan to scope workshop discussions to the five broad principles Jobin et al. found underlying
the institutional documentation of AI ethics across the globe: transparency, justice and fairness, non-maleficence,
responsibility, and privacy [51].

WorkshopObjective 1: Define the underlying qualities associatedwith five ethical principles (transparency,
justice and fairness, non-maleficence, responsibility, and privacy) by which large-scale dataset curation
should be guided.

3 CHALLENGES TO ETHICAL LARGE-SCALE DATASET CURATION

Responsible dataset curation is not simple or straightforward. Even in instances where researchers have attempted
to collect fair or otherwise ethical datasets, they have been found to incidentally violate the expectations of other
researchers or the public [30, 91, 97]. Existing datasets have violated data subject consent [5, 11, 71, 77], infringed on
copyright [28, 52, 76], exploited data workers [8, 37, 89], contained poor demographic distribution [14, 43, 94] and
offensive image labels [10, 12, 84], and accidentally included illegal content [83]. These concerns span different stages of
the dataset lifecycle, including their composition, the processes underlying their creation, and their release for academic
and commercial uses.

Yet collecting datasets responsibly is extremely challenging, even when those datasets are relatively small in scale.
Recent work from Zhao et al. uncovered extensive challenges that dataset curators face when trying to enact ethics
throughout the dataset curation lifecycle [95]. The kinds of challenges which exist when creating fair evaluation datasets
may be much more complex for large-scale training datasets—or even entirely different.

Take ImageNet, once the standard for computer vision (CV) model training, which has around 14 million images
[27]. Now, ImageNet is considered too small for training foundation models. Datasets like LAION-5B, with its over
five billion images, have become the new standard [78]. How would the challenges associated with a lack of resources
impact approaches to dataset ethics for five billion human images? Using the ethical principles for large-scale datasets
fleshed out by workshop participants (Workshop Objective 1), we then plan to discuss the challenges to achieving those
principles given the massive scope and scale of large-scale datasets for training foundation models.

Workshop Objective 2: Identify the challenges specific to curating ethical large-scale training datasets.

4 OPPORTUNITIES FOR RESPONSIBLE LARGE-SCALE DATASET CURATION

While there are certain to be outstanding and thorny challenges to responsibly curating large-scale datasets that adhere
to ethical principles, it is still necessary to attempt to overcome them in our shared goal to create ethical foundation
models downstream. Already, scholars have improved numerous suggestions for positively improving dataset qualities
like increasing data diversity [64, 67], obtaining data subject consent [57, 61, 88], providing fair wages to data workers
[3, 29, 80], limiting dataset use [70], engaging stakeholders in data taxonomy design [66, 69, 79], and creating transparent
documentation [26, 46, 92]. Andrews et al. provided a comprehensive framework of ethical considerations for responsible
dataset curation throughout the development lifecycle, illuminating idealistic data curation approaches for smaller
scale evaluation datasets [4].

Yet, many of these ethical approaches may need to be reconsidered and redefined for the scale of foundation model
data. There may also be need for entirely new approaches which have yet to be considered, especially around issues like
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data instability and recency, transparency tools for parsing massive unstructured datasets, and environmental stability
for both collection and use [39, 82, 86].

Having identified the challenges (Workshop Objective 2) to responsibly enacting the ethical principles (Workshop
Objective 3), the final aim of the workshop is to begin initial ideation as an interdisciplinary community of research
and practice to actualizing ethics responsibly for large-scale dataset curation. For each challenge associated with dataset
composition, process, and release, workshop participants will ideate approaches to responsibly actualizing ethical
principles to overcoming them.

Workshop Objective 3: Ideate potential approaches for responsibly curating large-scale training datasets
that adhere to ethical principles.

5 WORKSHOP GOALS

As every industry scrambles to build and adopt foundation models, it is imperative that we as a community identify and
define ethical standards to uphold when curating the massive datasets underlying such models. This workshop aims
to gather interdisciplinary researchers and practitioners who are interested in addressing the challenges associated
with creating, managing, and using data responsibly for training large-scale foundation models, like those underlying
ChatGPT, BERT, and DALL-E. Given CSCW’s’s rich history of interdisciplinary discourse, we plan to engage participants
from a diverse range of communities and backgrounds and encourage the sharing of ideas across topics and domains.
The workshop will gather interdisciplinary researchers and practitioners interest in the use of human-centric data for
training foundation models, including generative AI, LLMs, and other large-scale AI tasks.

In this workshop, we aim to address: (1) the qualities underlying ethical principles as they apply to large-scale
datasets used to train foundation models; (2) the challenges specifically associated with responsibly curating datasets for
large-scale foundation models that adhere to desired ethical principles; and (3) the potential opportunities for mitigating
those challenges and promoting responsible dataset curation in an era of large-scale foundation model training. We aim
to address key questions during the workshop, such as:

• How do existing challenges to enacting ethics via responsible data curation apply to large-scale foundation
models?

• What are the unique challenges specific to actualizing ethics when curating datasets for large-scale foundation
models?

• What are the cultural, technical, social, legal, and environmental factors that should be prioritized when
defining ethical principles for dataset curation?

• What existing ethical principles and approaches to responsible data curation can be applied to large-scale
foundation model data?

• How can we assess the effectiveness of ethical principles for large-scale foundation model training datasets?
• What challenges exist for different parts of the dataset curation lifecycle?
• What opportunities are specific to the different parts of the dataset curation lifecycle?
• How might we develop regulation specific to upholding ethical principles in training data for large-scale
foundation models?

• How do we assign responsibility for large-scale ethical dataset curation?
• What practices and conditions should be implemented to ensure ethical labor standards in data collection
and annotation processes?
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• How can we encourage the adoption of ethical dataset practices within academic and industry settings?
• What role can interdisciplinary and cross-domain collaboration play in developing ethical principles and
enacting responsible dataset curation?

• What strategies can be employed to engage with underrepresented communities and involve them in the
dataset creation process?

• What are the considerations and potential consequences of specific dataset collection methodologies?
• What tools, policies, and processes can enable more responsible large-scale training dataset curation?

6 WORKSHOP LOGISTICS

Pre-workshop plans: Our pre-workshop plans will focus on: (1) advertising the workshop so that we receive strong
and diverse submissions; (2) building community among workshop participants; and (3) knowledge sharing prior to the
workshop.

First, to advertise the workshop to an interdisciplinary audience, we will circulate calls for participation using both
mailing lists and social media. The organizing committee has a strong network across CSCW, HCI, AI, FATE, and social
science communities. We will use social media websites like X/Twitter, Bluesky, LinkedIn, and Facebook groups (e.g.,
ACM SIGCHI) to reach familiar and new audiences. We will also distribute calls for participation via listservs and
communication channels including those related to HCI (CSCW-SIG, CSCW-ALL, CHI-announcements, CHI-resources),
algorithmic fairness (e.g., FAccT, AIES, Algo Audit Network), machine learning (e.g., MLCommons, Data-centric Machine
Learning Research, Natural Language Processing Data Community), and social computing (e.g., 4S, AIR-L, Labortech,
AOIR). We will also circulate the call to personal contacts who might be interested in the workshop. To promote
diversity, equity, and inclusion, we will promote participation from historically marginalized and underrepresented
groups.

Second, to build community, we will create a Slack space or Discord channel with details about the workshop, calls
for participation, and instructions for submissions. This online space will be used both before and during the workshop.
Before the workshop, it will be used to facilitate planning and introductions between participants before the workshop.

Finally, we plan to share reading materials focused on ethical principles and challenges to dataset curation with
participants on this platform approximately two weeks prior to the workshop day. We will also prompt to introduce
themselves and their personal goals for the workshop. We will include workshop day instructions and questions to
think over as well.

Workshop mode:
Our workshop will also be largely design and discussion focused. CSCW 2025 will be a primarily in-person event

with limited support for virtual attendance. Thus, we plan to host our workshop as an in-person event, to be able to
facilitate the most successful workshop community possible. To best conduct this in-person workshop, we will require
A/V support to facilitate participant lighting talks and final presentations at the end of the session. To facilitate group
sessions, we will require a large room with six to eight large tables. The tables should be far enough apart from one
another to allow teams to work privately together during group sessions. Attendees will be asked to bring personal
devices so that they can work using Miro or other virtual brainstorming boards. We will also ask participants to take
notes about their discussions using Google docs.
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Start End Duration Session
Before the Workshop

- - 2 weeks Participants introduce themselves in the Discord channel
Day of the Workshop (9:00–16:00 JST)

9:00 9:30 30 min Welcome and Opening Remarks
9:30 10:30 60 min Participant Lightning Talks
10:30 11:00 30 min Coffee Break #1
11:30 12:30 60 min Group Session # 1: Ethical Principles for Dataset Curation
12:30 1:30 60 min Lunch Break
13:30 14:30 60 min Group Session #2: Challenges to Ethical Dataset Curation
14:30 14:45 15 min Coffee Break #2
14:45 15:45 60 min Group Session #3: Opportunities for Ethical Dataset Curation
15:45 16:00 15 min Coffee Break #3
16:00 16:45 45 min Group Session #4: Framework Writing
16:45 17:45 60 min Group Share
17:45 18:00 15 min Closing and final remarks

Optional: Post-Workshop Dinner
Table 1. Tentative schedule of workshop activities, including asynchronous activities prior to the workshop day.

7 WORKSHOP DAY

The workshop will be organized as a one-day in-person event tentatively taking place from 9:00 to 18:00 in Bergen,
Norway (see Table 1 for the proposed schedule). We expect an attendance of around 15-35 total participants. In case of
larger numbers, the lightning talk sessions will be organized in breakout groups that will be created based on themes
from the position papers. However, we plan to cap attendance to 35 to facilitate more engaged conversations in the
limited time of the workshop.

For the group sessions aimed at attending to the three workshop goals, we will establish groups that will persist
throughout the workshop to ensure continuity of topic understanding for the sake of framework writing and group
sharing at the end of the workshop day. Groups will be formed around the three areas of ethical concern highlighted
in the Introduction above: (1) composition; (2) process; and (3) release. Each group session will correspond to each
workshop objective introduced in Sections 2, 3, and 4 above, respectively. The culmination of each group activity will
be clustered in Group Session #4, where groups will be asked to design a draft framework for their respective area of
ethical concern. Groups will then be asked to share high-level takeaways of these preliminary frameworks.

We also plan to host an optional post-workshop dinner so that workshop participants can further exchange ideas
and network with one another, including those they did not get a chance to interact with as much during the workshop.

8 POST-WORKSHOP PLANS

After the conclusion of the workshop, the organizers will provide a brief summary of the workshop on the website
(https://responsiblefmdata.github.io/) and Discord channel. Position papers will also be published on the website and as
collated proceedings on ArXiv, with author permission. Beyond the inaugural workshop at CSCW 2025, we plan to host
a series of workshops focused on ideating and refining best practices for ethically curating large-scale training datasets
with different scholarly communities, including: at machine learning conferences (NeurIPS), design conferences (DIS),
and fairness conferences (FAccT and/or AIES). We plan to use the Discord for future workshops in the workshop series.
This will facilitate continued participation and community building as the workshop series develops across conference
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communities. We will then collate and analyze our longitudinal takeaways in the form of an article or white paper so
that the broader community can learn from the shared knowledge of the workshop community. Interested workshop
participants will be invited to contribute to this article or white paper. We also hope to publish a special issue of a
journal (e.g., TOCHI) focused on ethical principles, challenges, and opportunities for dataset curation. This special
issue will serve as a platform for workshop participants to either expand upon their position papers, refining them for
potential publication after the workshop, or to submit any other pertinent work they may have developed.

9 CALL FOR PARTICIPATION

Call for participation: The workshop website (https://responsiblefmdata.github.io/) will host information about the
workshop and its goals, as well as instructions to apply to attend. A strong emphasis will be placed on promoting a
broad range of viewpoints on fairness in ML data across a variety of domains and disciplines. Given the interdisciplinary
nature of ethical dataset curation, we seek to invite participants across a breadth of areas, including, but not limited to,
HCI, AI, ML, STS, psychology, sociology, anthropology, law, policy, and ethics.

Before the workshop, we will invite participants to submit position papers (2–4 single spaced pages) via EasyChair
in the ACM single-column format. Submissions will be reviewed by the program committee. In the position papers,
participants will be asked to share their insights on the state of ethical large-scale dataset curation and thoughts on
open areas for exploration. Submitted position papers will be assessed by the workshop organizers based not only on a
paper’s relevance to the workshop, but also on its ability to provoke discussion. To promote diversity of attendance, we
will also include an alternative application option by using Google forms. With author permission, accepted position
papers will be made available on the workshop website as workshop proceedings. Potential themes include, but are not
limited to:

• Ethical principles and/or fairness definitions for AI datasets
• Challenges to collecting ethical datasets
• Dataset labor practices, including collection and annotation
• Identification and mitigation of dataset biases
• Best practices for dataset collection, maintenance, distribution, management, and use
• Implementations of practices and tools for ethical dataset development
• Data subject perspectives on data use, including from specific identity groups
• Legal practices and policy frameworks relevant to datasets
• Environmental or sustainability concerns surrounding datasets
• Tools and artifacts focused on improving responsibility of datasets

10 ORGANIZERS

The organizing committee comprises researchers, practitioners, and lawyers with backgrounds in HCI, ML, CV, NLP,
algorithmic fairness, and social science with representation from both industry and academia. With a range of ethnic,
cultural, and gender backgrounds, the committee brings extensive experience in dataset design, model training, and
ethical guideline development.

Morgan Klaus Scheuerman is a Research Scientist at Sony AI within its AI Ethics team and a visiting scholar in
Information Science at University of Colorado Boulder. He is interested in how identity characteristics are embedded
into algorithmic infrastructures, like datasets, and how those permutations influence the entire system.
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Dora Zhao is a PhD student at Stanford University. Her research focuses on uncovering, evaluating, and mitigating
social biases in AI systems, primarily considering the computer vision and image-text domains. This includes improving
dataset curation practices.

Jerone T. A. Andrews is a Research Scientist at Sony AI within its AI Ethics flagship project. His current research
centers on human-centric computer vision, in particular, responsible data curation, bias detection and mitigation, and
human-centric representation learning.

Abeba Birhane is a Senior Advisor in AI Accountability at Mozilla Foundation and an Adjunct Assistant Professor at
Trinity College Dublin. She also serves on the UN Secretary-General’s AI Advisory Body and the AI Advisory Council in
Ireland. Her research focuses on AI accountability, with a particular focus on audits of AI models and training datasets.

Q. Vera Liao is an Associate Professor of Computer Science and Engineering at the University of Michigan. Her
research interests are in human-AI interaction and responsible AI, with an overarching goal of bridging emerging AI
technologies and human-centered design practices.

Georgia Panagiotidou is an Assistant Professor at King’s College London. Her research examines how people
interact with data and specifically how they handle issues such as biases, uncertainties and frictions when using data
visualizations. She is increasingly interested in topics surrounding sustainability and climate justice as they relate to AI.

Pooja Chitre is a PhD student at Arizona State University. Her research is at the intersections of health policy,
critical data studies, and postcolonial studies. Her present work focuses on understanding the data work required to
make data actionable for healthcare organizations.

Kathleen Pine is an Associate Professor in the College of Health Solutions at Arizona State University. Her research
examines design, implementation, and use of health information technologies, and has researched how increased
demands for data work are reconfiguring healthcare practice.

Shawn Walker is an Assistant Professor in the School of Social and Behavioral Sciences at Arizona State University.
His research focuses on mis and disinformation, and the challenges of collecting, analyzing, and preserving data from
social media platforms. He also examines the use and implications of social media and web archives to train ML models.

Jieyu Zhao is an Assistant Professor at University of Southern California. Her research lies in detecting and
mitigating societal biases in NLP and ML. Her current research focuses on examining, understanding, and reducing
biases in large language models and promoting human-AI collaboration.

Alice Xiang is the Global Head of AI Ethics for Sony Group Corporation and Lead Research Scientist for Sony
AI. Her current research focuses on best practices for ethical data curation and developing benchmarks and tools for
human-centric AI technologies, particularly around addressing issues of diversity, transparency, and mitigating biases.
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